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Stereochemistry of the 1,4-eliminative ring opening of
[3-substituted (E)-1-propenyl]oxiranes to the corresponding
2,4-dienyl alcohols by LDA was investigated. The Z=E ratios
of the resulting 2,4-dienyl alcohols varied with the substituents
at 3-position of the propenyl group. This phenomenon was
discussed based on the concept of a ‘‘syn-effect,’’ which is most
primarily rationalized by a � ! �� interaction. Furthermore, in
the case of �-benzyloxy-substituted vinyloxirane, [1,2]-Wittig
rearrangement proceeded following the initial 1,4-eliminative
ring opening to give a (E,Z)-2,4-dienyl 1,6-diol in a completely
stereoselective manner.

The elimination reaction of allylic compounds is a useful
method for the preparation of 1,3-dienes as versatile synthetic
intermediates. Previously we investigated the stereochemistry
of the desulfonylation reaction of �,�-dialkylated (E)-allylic
sulfones with a base and found that the sterically unfavorable
(Z)-dienes were predominantly formed.1 The result was rational-
ized by ‘‘conformational acidity’’ that essentially implies a ‘‘syn-
effect.’’2,3 We proposed that the ‘‘syn-effect’’ is primarily caused
by a � ! �� interaction.1,3b–3e Recently, we revealed that the
‘‘syn-effect’’ works dominantly also in the elimination reaction
of acyclic (E)-allylic acetates catalyzed by palladium under
the specific conditions utilizing a base.4

Vinyloxirane is also one of the allylic compounds and 1,4-
eliminative ring opening by treatment with lithium or sodium
amides proceeds to give dienols.5 Herein, we investigated the
stereochemistry of the 1,4-eliminative ring opening of (E)-vinyl-
oxiranes, i.e., [3-substituted (E)-1-propenyl]oxiranes, by treat-
ment with LDA, and the observed stereochemistry was rational-
ized by the concept of the ‘‘syn-effect.’’

First the 1,4-eliminative ring opening of an [(E)-1-pent-
enyl]oxirane (R ¼ Et) 1a was examined.6 Among alkyllithiums
and lithium amides examined, LDA was found to be a suitable
base for the 1,4-eliminative ring opening in the presence of
HMPA in THF at 25 �C. When 1 equiv. of LDA was used, the
1,4-eliminative ring opening scarcely proceeded. The use of 3
equiv. of LDA gave �-ethyl-substituted 2,4-dienyl alcohol 2a
in 89% yield in the preference of (Z)-isomer7 (Table 1, Entries
1–3). From the time course of the reaction, Z=E ratio of 2a
was confirmed to be little changed under these conditions. The
1,4-eliminative ring opening did not occur at �78 �C (Entry 4).

Next, the 1,4-eliminative ring opening of various (E)-vinyl-
oxiranes was examined by using 3 equiv. of LDA in the presence
of HMPA in THF. Contrary to �-ethyl-substituted product 2a, a
�-methyl-substituted product 2b isomerized during the reaction
(Entries 5–8). At the initial stage of the reaction, Z=E ratio
of 2b was higher than that of �-ethyl-substituted product 2a
(Entry 5). Z-Selectivity was lowered along with the bulkiness

of the substrates (Entries 9 and 10). In the case of the �-phenyl
substrate 2e, Z-selectivity was as low as the case of �-t-butyl
substrate 2d (Entry 11). When the reaction was carried out
at �78 �C, Z-selectivity was slightly increased (Entry 12). �-
Fluoro and �-benzyloxy groups were found to show complete
Z-selectivity (Entries 13 and 14), while �-benzylthio-substituted
vinyloxirane 1h afforded a 29/71 mixture of (Z)- and (E)-dien-
ols 2h (Entry 15). In the conversion of (E)-vinyloxiranes 1 to the
corresponding 2,4-dienyl alcohols 2, the relative degree of the
‘‘syn-effect’’ with respect to the �-substituents R was found as
follows:

F-¼� PhCH2O- > CH3- > CH3CH2- > (CH3)2CH-

> PhCH2S- > (CH3)3C-¼� Ph-

It seems to be possible to rationalize the relative degree of
the Z=E ratios by the ‘‘syn-effect’’ in the transition state of depro-
tonation. In the transition state of deprotonation, the hyperconju-
gation of a developing anion generated by the interaction of H�
with a base is recognized more effective in the eclipsed confor-
mations A and B, in both of which the developing anion is
aligned with the ��

C=C orbital, and the other conformations
can be neglected,8 according to our recent proposal that the � !
�� interaction is the most probable explanation for the ‘‘syn-
effect.’’1,3b–3e,4 At the deprotonation of vinyloxiranes 1a–1c
(R ¼ Me, Et, iPr), the CC eclipsed syn-conformation A might

Table 1. 1,4-Eliminative ring opening of (E)-vinyloxiranes 1

1

R α
βγ

δ
O

R 2

αβγ
δ OH

LDA (n equiv.)
HMPA (2n equiv.)

THF, T °C, t h

Entry R n T/�C t/h Yield/% Z=Ea

1 CH3CH2 a 1.1 25 16.0 6 75/25

2 2.0 25 16.0 44 74/26

3 3.0 25 16.0 89 73/27

4 3.0 �78 6.0 nrb

5 CH3 b 3.0 25 0.5 49c 88/12

6 3.0 25 1.0 88c 70/30

7 3.0 25 2.0 >99c 33/67

8 3.0 25 3.0 >99c 23/77

9 (CH3)2CH c 3.0 25 20.0 79 56/44

10 (CH3)3C d 3.0 25 24.0 67 5/95

11 Ph e 3.0 25 0.5 83 4/96

12 3.0 �78 1.0 70 8/92

13 F f 3.0 �78 1.5 82 >99/1

14 PhCH2O g 3.0 �78 1.5 83 >99/1

15 PhCH2S h 3.0 �78 1.5 70 29/71

aThe ratios were determined by 400MHz 1HNMR spectra. Only the ster-

eochemistry of C�=C� bond is shown.7 bNo reaction. cConversion yield

determined by 400MHz 1HNMR spectrum of the crude product.
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be rather preferred to CH eclipsed form B, because a hypercon-
jugative electron donation by the C–H�2 bond is more effective
than that by the C–C bond,9 since H�2 can also interact with a
base to afford the developing anion. In the cases of �-fluoro
and �-benzyloxy-substituted vinyloxiranes 1f and 1g, the CH
eclipsed form B is unfavorable due to the low donor ability of
the C–F and C–O bonds,9c,10 resulting in an exclusive formation
of (Z)-2f and 2g via conformation A. In the cases of 1a, 1b, and
1f–1h, it is also possible to stabilize the syn-conformation at the
transition state of deprotonation by 6�-electron homoaromatic-
ity involving the developing charge at the �-position and a pseu-
do p-orbital of the neighboring CH2 (R ¼ CH2R

0), or a lone pair
of electrons in a p-orbital of the neighboring hetero atom X
(XR0 ¼ F, OCH2Ph, or SCH2Ph), as depicted in C and D,
respectively (Scheme 1).11

During the course of the investigation of the influence of the
reaction temperature, the 1,4-eliminative ring opening of �-
benzyloxy-substituted vinyloxirane 1g was carried out at 25 �C
to afford (Z)-dienol 2g still stereoselectively (Z=E ¼ >99=1)
by the use of 1.1 equiv. of LDA (Table 2, Entry 1). When 2.0
equiv. of LDA was used, a 2,4-dienyl 1,6-diol 3 was found to
be produced stereoselectively (Entry 2). Finally the dienyl diol
3 was obtained in 85% yield with complete stereoselectivity
(Z=E ¼ >99=1) utilizing 3.0 equiv. of LDA (Entry 3). The diol
3 was assumed to be formed via [1,2]-Wittig rearrangement of
an anion 4 generated from the initial 1,4-eliminative ring open-
ing product with excess amounts of LDA.12 The rearrangement
occurred with complete retention of the geometry in the C�=C�

bond (Scheme 2).13 This result shows that the highest Z-selectiv-
ity based on the ‘‘syn-effect’’ observed for the oxygen-substitut-
ed substrate could be utilized for the successive stereoselective
C–C bond formation.

In conclusion, the stereochemical outcome in the 1,4-elimi-
native ring opening of (E)-vinyloxiranes to the corresponding
2,4-dienyl alcohols could be well rationalized by the ‘‘syn-ef-
fect’’ in the transition state of deprotonation, which mainly arose
from a � ! �� interaction. It is noteworthy that [1,2]-Wittig re-
arrangement following the 1,4-eliminative ring opening in the
case of �-benzyloxy-substituted vinyloxirane could demonstrate
a new entry of ‘‘syn-effect’’ applied to the further stereoselective
transformation.
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12 U. Schöllkoph, Angew. Chem., Int. Ed., 9, 763 (1970); J. A. Marshall, ‘‘Com-
prehensive Organic Synthesis,’’ ed. by B. M. Trost, Pergamon Press, Oxford
(1991), Vol. 3, pp 979–981; K. Tomooka, J. Synth. Org. Chem. Jpn., 59,
322 (2001).
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Scheme 1.

Table 2. 1,4-Eliminative ring opening of �-benzyloxy-substi-
tuted (E)-vinyloxirane 1g

1g

PhCH2O
O

3

OH

LDA (n equiv.)
HMPA (2n equiv.)

OHPh

THF, 25 °C, 0.5 h

PhCH2O
2g

OH

α
βγ

δ

αβγ
δ

αβγ
δ

Entry n
Recovery of

1g/%

Yield of

2g/%

Yield of

3/%

1 1.1 50 38a —

2 2.0 — 38a 46a

3 3.0 — — 85a

aThe Z=E ratio of C�=C� bond was found to be >99/1 by 400MHz
1HNMR spectrum.
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